Interesting People mailing list archives

Scientists Create First Working Model of a Two-Qubit Electronic Quantum Processor


From: David Farber <dave () farber net>
Date: Thu, 2 Jul 2009 09:56:11 -0400


Scientists Create First Working Model of a Two-Qubit Electronic Quantum Processor

Model uses the power of quantum mechanics in a processor similar to that found in computers and cell phones

June 30, 2009

<http://www.nsf.gov/news/news_summ.jsp?cntn_id=115089&govDel=USNSF_51>

A team led by Yale University researchers has successfully implemented simple algorithms using a quantum processor based on microwave solid- state technology--similar to that found in computers and cell phones. The new processor is far from conventional, however, in that it uses the potent power of quantum mechanics to bring the dream of quantum computing a small but significant step closer to reality.

The work was supported in part by the Yale Center for Quantum and Information Physics (CQUIP), funded by a grant from the National Science Foundation's Division of Materials Research and Division of Physics, and by the Army Research Office and National Security Agency. The findings were published online in the June 28 issue of Nature.

"This result is an important step forward towards all-electronic quantum information processing," said Wendy Fuller-Mora, program director for the NSF Division of Materials Research/Condensed Matter Physics.

"Our experiment can only perform a few very simple quantum tasks, which have been demonstrated before using other systems such as photons, trapped ions, and nuclear magnetic resonance," said Robert Schoelkopf, a principal investigator and professor of applied physics and physics at Yale. "But this is the first time it has been done in an all-electronic device, which looks and feels much more like a regular microprocessor."

The team used artificial atoms as quantum bits, or qubits. Although made from over a billion aluminum atoms in a superconducting electronic circuit, these qubits behave as single atoms. The difference is that the manufactured atoms are much larger and therefore easier to control than single atoms or other types of qubits.

Just like a single atom, an artificial atom can be stimulated into different energy states, akin to the "on" and "off" states of the bits in conventional computers. But following the counterintuitive laws of quantum mechanics, the scientists can also place these artificial atoms in "superpositions" of quantum states-both "off" and "on" at the same time. This wider variety of possible states allows for greater information storage and processing power.

As an example, imagine searching through a set of four phone numbers, including one for a friend, without knowing which number belonged to the friend. "It's like being able to place one phone call that simultaneously tests all four numbers, but only goes through to the right one," Schoelkopf said.

To perform this kind of "reverse phone book" search, the scientists used logic gates made from two qubits, which communicated with one another using a "quantum bus" design previously developed by members of the team.

[snip]


-------------------------------------------
Archives: https://www.listbox.com/member/archive/247/=now
RSS Feed: https://www.listbox.com/member/archive/rss/247/
Powered by Listbox: http://www.listbox.com


Current thread: