Interesting People mailing list archives

IP: The risks of key recovery ... by an all star cast 1998 Key escow paper


From: David Farber <dave () farber net>
Date: Tue, 18 Sep 2001 08:52:39 -0400

Abstract

A variety of "key recovery," "key escrow," and "trusted third-party" encryption requirements have been suggested in recent years by government agencies seeking to conduct covert surveillance within the changing environments brought about by new technologies. This report examines the fundamental properties of these requirements and attempts to outline the technical risks, costs, and implications of deploying systems that provide government access to encryption keys.

INTRODUCTION

One year after the 1997 publication of the first edition of this report, its essential finding remains unchanged and substantively unchallenged: The deployment of key recovery systems designed to facilitate surreptitious government access to encrypted data and communications introduces substantial risks and costs. These risks and costs may not be appropriate for many applications of encryption, and they must be more fully addressed as governments consider policies that would encourage ubiquitous key recovery. Our 1997 "Risks" report was designed to stimulate a public, technical debate and analysis that, in our judgment, must precede any responsible policy decision that could result in the wide-scale deployment of key recovery systems. While there are numerous and important economic, social, and political issues raised by key recovery, the report's analysis was confined to the technical problems created by deployment of key recovery systems designed to meet government access specifications. As of mid-1998, no substantive response addressing these technical concerns has been offered.

While efforts have been made over the last year to design key recovery systems for commercial purposes, they do not alleviate the concerns raised by deployment at the scale and in the manner required to meet government demands. The design of secure key recovery systems remains technically challenging, and the risks and costs of deploying key recovery systems are poorly understood. Most significantly, government demands for access place additional requirements on key recovery systems, including covert access, ubiquitous adoption, and rapid access to plaintext. There is good reason to believe that these additional requirements amplify the costs and risks of key recovery substantially.

In the past year, the importance of cryptography for protecting computing and communications systems has gained broader recognition among the public and within industry. Most presently-deployed encryption systems support rather than hinder the prevention and detection of crime. Encryption helps to protect burglar alarms, cash machines, postal meters, and a variety of vending and ticketing systems from manipulation and fraud; it is also being deployed to facilitate electronic commerce by protecting credit card transactions on the Net and hindering the unauthorized duplication of digital audio and video. However, the deployment of encryption (and other information protection mechanisms) is still patchy. Most automatic teller machine transactions are protected by encryption, but transactions made by bank staff (which can involve much larger amounts of money) are often not protected. Most Internet electronic mail is still sent "in the clear" and is vulnerable to interception. Most cellular telephone calls in the U.S. are still sent over the air without the benefit of strong encryption. The situation is similar in other areas. Members of the law enforcement and intelligence communities continue to express concern about widespread use of unescrowed cryptography. At the same time, these communities have expressed increasing alarm over the vulnerability of "critical infrastructure." But there is a significant risk that widespread insertion of government-access key recovery systems into the information infrastructure will exacerbate, not alleviate, the potential for crime and information terrorism. Increasing the number of people with authorized access to the critical infrastructure and to business data will increase the likelihood of attack, whether through technical means, by exploitation of mistakes or through corruption. Furthermore, key recovery requirements, to the extent that they make encryption cumbersome or expensive, can have the effect of discouraging or delaying the deployment of cryptography in increasingly vulnerable computing and communications networks.

The technical concerns about key recovery and trusted third-party systems in 1998 remain largely unchanged from our 1997 analysis. We specifically do not address questions of how and whether key recovery might benefit law enforcement and whether there are alternatives to key recovery that might achieve equal or greater benefits. However, the predictable costs and risks of key recovery, particularly when deployed on the scale desired by law enforcement, are very substantial. The onus is on the advocates of key recovery to make the case that the benefits outweigh these substantial risks and costs.

http://www.cdt.org/crypto/risks98/


>



For archives see: http://www.interesting-people.org/


Current thread: