Interesting People mailing list archives

Beam Me Up Scotty? A Q&A about Quantum Teleportation with H. Jeff Kimble


From: David Farber <dave () farber net>
Date: Fri, 15 Feb 2008 10:14:58 -0500



Begin forwarded message:

From: dewayne () warpspeed com (Dewayne Hendricks)
Date: February 15, 2008 3:44:13 AM EST
To: Dewayne-Net Technology List <xyzzy () warpspeed com>
Subject: [Dewayne-Net] Beam Me Up Scotty? A Q&A about Quantum Teleportation with H. Jeff Kimble

[Note:  This item comes from friend Ken DiPietro.  DLH]

February 14, 2008
Beam Me Up Scotty? A Q&A about Quantum Teleportation with H. Jeff Kimble
Why the effect is nothing like Star Trek

By JR Minkel
<http://www.sciam.com/article.cfm?id=why-teleporting-is-nothing-like-star-trek&print=true >

The sci-fi dream (or utter fantasy) of getting from one place to another instantaneously continued this February 14, with the opening of Doug Liman's film Jumper, based on the novel by Steven Gould. We asked quantum physicist H. Jeff Kimble of the California Institute of Technology to explain how physicists understand quantum teleportation, which turns out to be more relevant to computing than to commuting. Note: This is an expanded version of a Q&A published in the March 2008 print edition of Scientific American.

Scientific American: What's the biggest misconception about teleportation? Jeff Kimble: That the object itself is being sent. We're not sending around material stuff. If I wanted to send you a Boeing 757, I could send you all the parts, or I could send you a blueprint showing all the parts, and it's much easier to send a blueprint. Teleportation is a protocol about how to send a quantum state—a wave function—from one place to another.

Is transmitting a quantum state hard to do?
The most straightforward way to do it would be to imagine it was an electron: just shoot the electron from point A to point B and it takes its quantum state with it. But that’s not always so good, because the state gets messed up in the process.

How does teleportation get around the disruption of the quantum state?
The special resource that enables teleportation is entanglement. You're Alice [in location A], and I hand you an electron in an unknown quantum state. Your job is to send the quantum state (not the electron) to location B, which is Bob. If you try to measure it directly, you necessarily disturb it.

You and Bob also share a pair of electron—you have one, Bob has the other—and they're in an entangled state such that if yours is spinning up, his is spinning down and conversely.

You make a joint measurement of two electrons—the one I handed you and the one you're sharing with Bob. And that gives you two bits of information. You call up Bob on the cell phone and give him those two bits, and he uses them to manipulate his electron. And bingo, in the ideal case he can perfectly re-create the state of the electron that I handed you.

Why doesn't Alice just copy the quantum state and store the copy?
There are uncertainty relations like Heisenberg's uncertainty principle. When I hand my electron to Alice, what she might think to do is just keep a copy—clone it. The more information she tries to get about the state, the less good is the teleportation. If she tries to keep a perfect copy, then Bob would create a state that is perfectly random.

Why would you want to transmit a quantum state? What are the applications? Imagine you want to build a quantum computer. A quantum computer is going to have parts just like a computer on your desktop. They have to be wired together quantum mechanically. The quantum memory's got to talk to the quantum processor. Teleportation is just a fancy quantum wire.

[snip]

-------------------------------------------
Archives: http://www.listbox.com/member/archive/247/=now
RSS Feed: http://www.listbox.com/member/archive/rss/247/
Powered by Listbox: http://www.listbox.com


Current thread: